Optimal Operation and Management of Energy Storage Systems Based on Real time Predictive Modeling and Adaptive Battery Management Techniques

Venkat R. Subramanian

Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO

Shriram Santhanagopalan

Center for Transportation Technologies and Systems, National Renewable Energy Laboratory, Golden, CO

Technology

 2D thermal-electrochemical coupled models with capacity fade mechanisms integrated into BMS

- BMS based on fastest and detailed physics based models
- Demonstrate improvements in safety, performance, and battery lifetime.

Value Proposition and Differentiation

- Advanced BMS to enable less battery footprint.
- Estimation of internal states and parameters in real time will give complete knowledge of underlying system and improve safety
- Enable accurate SOC and SOH prediction
- Calculation and implementation of optimal battery operating conditions
- Pushing the limit of simulation capability and model predictability
- Pushing the limit of state estimation efficiency and accuracy.

Metrics	State of the Art	Proposed Metric
1D EC model	~1 min	~30 ms
Pseudo 2D EC model	1-2 min	~100 ms
2D Thermal EC coupled	~15 min	< 5 s
Models for BMS	Circuit based/ Empirical	Detailed 2D, thermal- EC model with capacity fade

Performance Targets and Validation

- Integration of microcontroller with physics-based control models onto a large format cell and to demonstrate
 - i) a 20% reduction in the weight of the cell
 - ii) a 50% reduction in the charging time for the cell without compromising the number of cycles

